Robust Model Predictive Control
ثبت نشده
چکیده
The robust control problem concerns to the control of plants that are only approximately known. Usually, it is assumed that the plant lies in a set of possible plants and this set can be quantitatively characterized. It is sought a control design that assures some kind of performance, which includes stability, for all the members of the family of candidate plants. Robust control theory usually assumes that the controller is linear and most of the available theory will remain useful only when the operating point of the system is such that the system is unconstrained or has a fixed set of active constraints.
منابع مشابه
Improving the stability of the power system based on static synchronous series compensation equipped with robust model predictive control
Low-frequency oscillations (LFO) imperil the stability of the power system and reduce the Capacity of transmission lines. In the power systems, FACTS devices and Power System stabilizers are used to improve the stability. Static synchronous series compensators is one of the most important FACTS devices. This paper investigates the damping of LFO with static synchronous series compensator (SSSC)...
متن کاملRobust Model Predictive Control for a Class of Discrete Nonlinear systems
This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملDevelopment of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS
In this paper, a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance. The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances. The continuous system with time-delay is discretized using uncertainty po...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملModelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کامل